Evaluation of the Mixture KNO$_3$/MnO$_2$ for Radiation Processing Dosimetry

A.M.S. Galante*, L.L.Campos
Instituto de Pesquisas Energéticas e Nucleares – Department of Radiation Metrology
Av. Prof. Lineu Prestes, 2242.
05508-000 – Cidade Universitária – São Paulo – Brazil
* E-mail: sgalante@ipen.br

Abstract. The radiolysis of the inorganic nitrates has been shown to be complex, undergoing decomposition when exposed to gamma radiation, producing NO$_2$ and O$_2$. The radiation dose is absorbed by all components present in the system, including the added substances. This mechanism has been investigated by several researchers and for different mixtures. In the present study mixtures of inorganic compounds were prepared in pellet form and its properties were evaluated by means of spectrophotometric techniques for high doses assessment. Compounds such as Ba(NO$_3$)$_2$, KBr and MnO$_2$ were mixed at the pure KNO$_3$. The mixtures were cold pressed and sealed in polyethylene films. The dosimetric properties were evaluated related to the changes of the optical response when the pellets are exposed to gamma radiation, in the dose range between 200 and 600 kGy. The mixture containing MnO$_2$ is the only one that presents reduction in the nitrites production rate and, consequently, larger doses can be measured before the saturation. The characteristics studied were absorption spectrum and signal stability of irradiated and non-irradiated detectors; batch reproducibility; effect of the environmental conditions and dose-response useful range. The pellets irradiated with gamma doses present the maximum wavelengths at 540 nm. The batch reproducibility is better than 98% (1σ). To maintain their properties the pellets should be sealed in polyethylene films and stored in ambient with low humidity. Ambient temperature between 10 and 35°C and ambient light don’t affect the optical response. The obtained results indicate that this type of dosimeter can be used in radiation process applying doses from 200 to 600 kGy.

Keywords: Dosimetry; Inorganic compounds; High dose

1. Introduction

Dosimetric systems based on radiolytic decomposition of inorganic nitrates are used in quality control programmes of radiation processing. The final products formed are NO$_2$ and O$_2$. The effect of added compounds on gamma irradiated nitrates has been studied. When a sample is exposed to ionising radiation, the energy is absorbed by all the components present in the system such as cation, anions and the added substances. The enhancement/retardation in the decomposition of nitrates by various additives have been explained in terms of their electron donor/acceptor properties [1-9].

In this work are reported the results of gamma radiation decomposition of mixtures that contain KNO$_3$ and compounds such as Ba(NO$_3$)$_2$, KBr and MnO$_2$. The studied parameters were: absorption spectrum and signal stability of irradiated and non-irradiated detectors; batch reproducibility; effect of the environmental conditions and dose-response useful range.

2. Materials and Methods

The KNO$_3$ was dried and different weights of the KNO$_3$ between 40 and 100% of pellet mass, and the compounds selected, between 10 and 60% of pellet mass were ground together in agate mortar. The mixtures of uniform composition (80 mesh) were cold pressed in the pellet form with 6 mm diameter and sealed in polyethylene film.
The gamma irradiations, at electronic equilibrium conditions, using a 60Co gamma source calibrated by Fricke dosimetry, were carried out in the dose range between 200 and 600 kGy. The nitrite ions formed during the radiolysis was estimated by using modified Shinn’s method [10] and recording the absorbance spectrum using a Shimadzu UV-VIS spectrophotometer, Model UV 2101PC.

3. Results and Discussion

The absorbance spectrum obtained with irradiated and non-irradiated pellets are showed in FIG. 1, 2 and 3 to the mixtures $\text{Ba(NO}_3\text{)}_2/\text{KNO}_3$, KBr/KNO_3 and $\text{MnO}_2/\text{KNO}_3$, respectively. The optical absorption spectrum presents a large band at about 540 nm, characteristic of the presence of NO$_2^-$ ions radiation induced.

![Absorbance vs Wavelength](image)

FIG. 1. Optical absorption spectrum of non-irradiated and gamma irradiated (300kGy) pellets.
A large number of pellets was produced and some of then were chosen to be evaluated at same conditions, aiming to determine the reproducibility of the pellets production process and the evaluation method. The obtained reproducibility was found to be better than 98% (1σ).
Different environmental conditions such as temperatures between 10°C and 30°C, relative humidity between 40% and 60% and ambient light don’t affect the response of the detector, however, as the KNO₃ is hygroscopic material the pellets should be maintained sealed between polyethylene film.

The solutions must be evaluated during the interval of 1 h after prepared. The maximum colour intensity of the solution is obtained 10 minutes after preparation. The non-irradiated and irradiated pellets can be stored by long periods without any change in their characteristics. The results obtained with solutions evaluated immediately after preparation, using pellets irradiated and stored up to 30 days are shown in the FIG. 4. The results obtained with solutions prepared at same time and evaluated periodically during 1 month of storage are shown in the FIG. 5.

FIG. 4. Relative response obtained with solutions (40% MnO₂ / 60% KNO₃) evaluated immediately after preparation, using pellets irradiated with 200 kGy and stored up to 30 days.
FIG. 5. Relative response obtained with solutions obtained using pellets (40% MnO$_2$/60% KNO$_3$) irradiated with 200 kGy, prepared and evaluated after up to 30 days of storage.

The dose response curves were obtained submitting the pellets to 60Co radiation on the dose range from 200 kGy to 600 kGy. Pellets of KNO$_3$ and of the mixtures 40% Ba(NO$_3$)$_2$/60% KNO$_3$, 40% KBr/60% KNO$_3$, and 40% MnO$_2$/60% KNO$_3$ were irradiated and evaluated at same conditions and the calibration curves are showed in the FIG. 6.
4. Conclusions

The method used for preparation and evaluation of the solutions containing KNO$_3$ and the compounds selected is simple and doesn’t request special cares.

The better results were obtained with the mixture 40% MnO$_2$ / 60% KNO$_3$, since occurs reduction in the decomposition rate of nitrate ions to nitrite ions.

The dosimetric characteristics investigated show that this detector material can be useful in the control of several processes and dosimetric applications for higher doses than that using pure KNO$_3$. The dose range is large, doses up to 600 kGy can be measured, while using KNO$_3$ p.a. the upper limit is approximately 150 kGy.

Acknowledgements
The authors are thankful to FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the financial support and to IPEN (Instituto de Pesquisas Energéticas e Nucleares) for providing its installations.

References

