Keynote Lecture 7a

The Lessons to be Learned from Incidents & Accidents

John Croft

Health Protection Agency (HPA)
Learning the Lessons: the basics

• First recognise there are lessons to be learned
 – Accidents, incidents, near misses, exercises etc.
• Capture and disseminate
• Feed into risk assessment - controls – training – review cycle
• Fundamental element of RP programmes
 – International
 – National
 – Use sector
 – organisational
Focus of Presentation

• To what extent are we learning?

• Are there new threats?

• What initiatives are being pursued?

• Common lessons

Focus on the non-nuclear sector
AWAKENING: Goiania 1987
IAEA Radiological Accident Reports
Important Root Causes

Lack of effective

- Regulatory infrastructure
- Critical mass of appropriately trained staff
- Source security measures and culture
 - Orphan Sources
Major International Initiatives

- IAEA’s Model Project
- IAEA’s Conferences on Safety & Security of Sources and National Infrastructures
 - Dijon 1998
 - Buenos Aires 2000
 - Vienna 2003
 - Rabat 2003
- IAEA Action Plan
- EU High Activity Sealed Source (HASS) Directive
IAEA Action Plan on Orphan Sources

• Regulatory infrastructures
• Management of disused sources
• Categorisation of Sources
• Response to abnormal events
 – National strategies: TECDOC 1388
• Information exchange
 – RADEV, Accident Investigation Reports
• Education and training
 – Courses and training packages
• International undertakings (Code of Conduct)
IAEA Action Plan on Orphan Sources

• Regulatory infrastructures
• Management of disused sources
• Categorisation of Sources
• Response to abnormal events
 – National strategies: TECDOC 1388
• Information exchange
 – RADEV, Accident Investigation Reports
• Education and training
 – Courses and training packages
• International undertakings (Code of Conduct)

RATE OF PROGRESS
Terrorism Changes the Range of the Credible

Extendibility and resilience of emergency plans

CBRN threat from terrorists
Sarin Attack on the Tokyo Underground

PA NEWS PHOTO
IMPACT

• Focus of effort and Political commitment
 – To improve our collective ability to prevent and respond to terrorist threats

• Recognition that a range of agents could be used
 – Chemical, Biological, Radiological and Nuclear (CBRN)
Impact on Radiological Protection

- Threat of Improvised Radiological Devices (IRD)
 - “Dirty bombs” and emplacement devices
- Increased focus on source security
 - Vienna Conference
 - Balance between security and utility
- Speeding up of implementation of Code of Conduct and HASS Directive
- Programmes to
 - Bring Orphan sources back under control
 - Deal with disused sources
Preparedness for IRDs: the Goiania Benchmark
UK: Getting Ahead of the Curve

- Need for an integrated Public Health Service
- emerging infectious diseases
- ability to respond
- Impact of “9/11”
- Rising terrorist threat
- CBRN spectre
- Consultation process
The Health Protection Agency

Communicable Disease Control

Surveillance Centre
Reference Laboratories
Regional Laboratories

Chemical Hazards (4)
National poisons
Information Service

Reference Laboratory
Vaccine
Research
Strategic Response

Radiation Hazards

IRPA 11 Keynote Lecture 7a
Keeping ones eye on the ball

• Current focus on CBRN well merited

• Beneficial in dealing with pre-existing issues

HOWEVER

• Conventional accidents and incidents still occur

• Important that we continue to learn the lessons
FEEDBACK MECHANISMS

• Development of Incident Databases
 • Reporting systems
 • Disseminating the lessons

• IRID
• RELIR
• RADEV
• EURAIDE

Nuclear Density Gauge Crushed by Road Roller whilst Operator Temporarily Distracted
Common Root Causes

Lack of, or ineffective

• regulatory bodies
• regulations
• regulatory enforcement

Lack of

• national radiological protection services
• training of workers and management
• commitment of management
• effective radiological protection programme
Effective Control

- Authorisation/licencing
- Purchase/installation
- Normal usage
- Increased risk modalities
 - Challenging events
 - Maintaining knowledge
 - Disused sources
 - Planned authorised disposal

Increased Risk of Loss of Control

- Illegal acquisition
- Long term storage before use
- Poor safety/security
- Maintenance
 - Use of mobile sources
- Lack of emergency preparedness plans
- Loss of key staff
- Bankruptcy
 - No clear future
 - Disposal costs
 - Dismantling of plant
 - Orphan sources
Effective Control

- Authorisation/licensing
- Purchase/installation
 - Normal usage
 - Increased risk modalities
 - Challenging events
 - Maintaining knowledge
 - Disused sources
 - Planned authorised disposal

Increased Risk of Loss of Control

- Illegal acquisition
- Long term storage before use
 - Poor safety/security
 - Maintenance
 - Use of mobile sources
 - Lack of emergency preparedness plans
 - Loss of key staff
 - Bankruptcy
 - No clear future
 - Disposal costs
 - Dismantling of plant
 - Orphan sources

IRPA 11 Keynote Lecture 7a
Juarez, Mexico: 1977 - 1983/4

- Unreported importation of teletherapy source
- No resources to use to use insecure storage
- Key staff leave
- 37 TBq ^{60}Co: 6000 metal pellets
- Removed to sell for scrap: source ruptured in transit
- What happened to the pellets
 - abandoned pick-up,
 - roadway
 - most to foundry
Juarez: Dose Rates around Pick-up, mGy h$^{-1}$

<table>
<thead>
<tr>
<th></th>
<th>540</th>
<th>360</th>
<th>145</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>250</td>
<td>480</td>
<td>130</td>
</tr>
<tr>
<td>15</td>
<td>650</td>
<td>4100</td>
<td>6500</td>
</tr>
<tr>
<td>10</td>
<td>380</td>
<td>2400</td>
<td>3000</td>
</tr>
<tr>
<td>10</td>
<td>170</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>60</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

1 m

1 m
Juarez: Detection and Non-Health Consequences

• Contaminated foundries and metal products
• Lorry sets off Los Alamos alarms
• ‘Rebars’: 814 houses demolished
• Tables and chairs: 2500 items

• Waste
• 16,000 m3 of soil
• 4,500 tonnes of metal

• Economic consequences
Effective Control

- Authorisation/licencing
- Purchase/installation
- Normal usage
- Increased risk modalities
- Challenging events
- Maintaining knowledge
- Disused sources
- Planned authorised disposal

Increased Risk of Loss of Control

- Illegal acquisition
- Long term storage before use
- Poor safety/security
- Maintenance
- Use of mobile sources
- Lack of emergency preparedness plans
- Loss of key staff
- Bankruptcy
- No clear future
- Disposal costs
- Dismantling of plant
- Orphan sources
Brachytherapy Sources

50 - 500 MBq usually ^{137}Cs: interstitial

\geq 400 GBq ^{192}Ir remote after-loading

Many sources, frequent use
 – losses in refuse, patients, cadavers
 – installed monitors

Complacency and poor management
Effective Control

- Authorisation/licencing
- Purchase/installation
- Normal usage
- Increased risk modalities
 - Challenging events
 - Maintaining knowledge
 - Disused sources
 - Planned authorised disposal

Increased Risk of Loss of Control

- Illegal acquisition
- Long term storage before use
- Poor safety/security
- Maintenance
 - Use of mobile sources
 - Lack of emergency preparedness plans
- Loss of key staff
- Bankruptcy
- No clear future
 - Disposal costs
 - Dismantling of plant
- Orphan sources
Nuclear Density Gauge
Industrial Radiography
Morocco 1984

- 1.1 TBq 192Ir industrial radiography source
-Disconnected from drive cable and fell out
- Picked up and taken home
- Out of control March - June
- 8 died
- Initially diagnosed as lung haemorrhages: poisoning
Yanango, Peru 1999

• 1.37 TBq ^{192}Ir
• industrial radiography
• source

• Similar causes
• Welder took home
• Recovered in 24 hours
• Welder lost leg
• Family also exposed
Cairo, Egypt 2000

• 1.85 TBq 192Ir industrial radiography source

• Similar causes and scenario

• Picked up by farmer

• Farmer and son died
Radiography Accident, Bolivia 2002
Effective Control

- Authorisation/licencing
- Purchase/installation
- Normal usage
- Increased risk modalities
- Challenging events
- Maintaining knowledge
- Disused sources
- Planned authorised disposal

Increased Risk of Loss of Control

- Illegal acquisition
- Long term storage before use
- Poor safety/security
- Maintenance
- Use of mobile sources
- Lack of emergency preparedness plans
- Loss of key staff
- Bankruptcy
- No clear future
- Disposal costs
- Dismantling of plant
- Orphan sources
Tammiku, Estonia 1994

• 0.15 - 7.4 TBq 137Cs
• Recovered from imported scrap metal in Tallin
• Taken to National Waste Disposal Facility
Tammiku, Estonia 1994

- Poor security
- Stolen for scrap metal value by 3 brothers
- 1 died
- Other 2 brothers and 2 members of family suffered serious deterministic effects

- Prompted search for other sources
- 1.6 TBq 137Cs in container
- Found near main road
Effective Control

- Authorisation/licencing
- Purchase/installation
- Normal usage
- Increased risk modalities
- Challenging events
- Maintaining knowledge
- Disused sources
- Planned authorised disposal

Increased Risk of Loss of Control

- Illegal acquisition
- Long term storage before use
- Poor safety/security
- Maintenance
 Use of mobile sources
- Lack of emergency preparedness plans
- Loss of key staff
 Bankruptcy
- No clear future
 Disposal costs
 Dismantling of plant
- Orphan sources
Lilo Military Training Centre, Georgia 1997

- 1992: Centre transferred from Soviet army to Georgian army
- 1997: 11 Georgian soldiers developed radiation-induced skin lesions and acute radiation syndrome

12 abandoned 137Cs sources:
in coat pocket; on building site; buried in grounds; in buildings; in refuse
Goiania: What you can do with an Orphan Source
Effective Control

Authorisation/licencing
Purchase/installation
Normal usage
Increased risk modalities
Challenging events
Maintaining knowledge
Disused sources
Planned authorised disposal

Increased Risk of Loss of Control

Illegal acquisition
Long term storage before use
Poor safety/security
Maintenance
Use of mobile sources
Lack of emergency preparedness plans
Loss of key staff
Bankruptcy
No clear future
Disposal costs
Dismantling of plant
Orphan sources
Istanbul, 1998/99

- Disused teletherapy
- Sources stored for >4 y
- Awaiting return to supplier

Packaged containers ready for shipment

Warehouse where sources were kept

Inappropriate storage facilities
Istanbul, 1998/99

- 2 containers sold as scrap and broken open
- 3.3 TBq 60Co source unshielded
- Containers dumped
- 10 people with acute radiation syndrome
- 404 people medically examined
- 23.5 TBq 60Co source unaccounted

Source containers found at scrapyard

Original source container
Monitoring for 2nd source, Istanbul 1999
Thailand, 1999/2000

- 3 teletherapy sources stored at unsecured parking lot
- Unauthorised removal of one unit - dismantled for scrap

15.7 TBq 137Cs source
10 people highly exposed
3 die
no contamination
Scale of Storage of Disused Sources

USA ~ 500,000 from 2M

EU ~ 30,000

England and Wales ~ 5,000
Legacy issues : Intact RTG
RTG Sources: Georgia
RTG Recovery: Georgia 2002
Effects of Conflict and Political Change

Beirut, Lebanon 1992
Deserted Hospital: Beirut 1992
Conclusions

• Initiatives to capture lessons and learn from them are bearing fruit
 – But still someway to go
• Orphan sources continue to be a problem
 – Significant legacy of orphan sources
• Terrorist threats have changed the range of the credible
 – Being addressed
 – Security: shift to include prevention of malicious intent
• Must keep our eye on the ball for conventional accidents and incidents